Monatshefte für Chemie 111, 1025-1041 (1980)

Monatshefte für Chemie

© by Springer-Verlag 1980

Zur Oxidation von Kreosol mit Sauerstoff in alkalischer Lösung

Modellversuche zum Sauerstoffaufschluß des Holzes

Paul Fricko, Martin Holocher-Ertl und Karl Kratzl*

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Austria

(Eingegangen 17. April 1980. Angenommen 6. Mai 1980)

Oxidation of Creosol with Oxygen in Alkaline Aqueous Solution. Model Experiments on Oxygen Pulping of Wood

Reaction of creosol (2-methoxy-4-methyl-phenol) with oxygen in alkaline aqueous solution gave several neutral and acidic compounds which were identified. By quantitative determination of the degradation products an evaluation of the degradation pathways was possible.

(Keywords: Cyclohexadienons as intermediates; Oxygen bleaching; Oxygen pulping; Phenol oxidation; Gas chromatography of methyl esters)

Einleitung

Der Ligninabbau mit molekularem Sauerstoff in alkalischer Lösung gewinnt zunehmend an Bedeutung (technische Zellstoffbleiche und Holzaufschluß). Im Interesse der Steuerbarkeit und Optimierung dieses Prozesses beschäftigten sich in den letzten Jahren mehrere Autoren damit, den Ablauf dieser Reaktion an monomeren Ligninmodellsubstanzen zu klären¹⁻⁴. Dabei konnten verschiedene Zwischenprodukte isoliert, sowie Vorstellungen über deren Bildungsmechanismus gewonnen werden.

Das Phenolderivat Kreosol (2-Methoxy-4-methyl-phenol) kann als einfaches Modell der aromatischen Komponenten im Gymnospermenlignin angesehen werden, da es die — in dieser Ligninart häufig vorkommende — Guajakolkonstitution aufweist. Die Alkylseitenkette der aromatischen Ligninkomponenten wird durch die Methylgruppe angedeutet.

Ziel der vorliegenden Arbeit war es, Abbauprodukte des Kreosols bei der Oxidation mit molekularem Sauerstoff in wäßrig-alkalischer Lösung zu isolieren und anhand dieser Substanzen eine Vorstellung über die Bedeutung der einzelnen Abbauwege zu gewinnen. Es wurde besonderer Wert auf die Isolierung schon früher geforderter² Zwischenprodukte, auf deren weiteren Abbau und auf die Identifizierung höhermolekularer Carbonsäuren gelegt, um die verschiedenen Abbauwege zu charakterisieren. Diese Arbeit stellt somit eine Erweiterung der Arbeiten mit F. W. Vierhapper⁴ dar, in welchem durch Abbauversuche mit ¹⁴C-markierten Phenolen (6,6'-Bikreosol) die Herkunft niedermolekularer Säuren (CO₂, HCOOH, CH₃COOH, etc.) geklärt wurde.

Ergebnisse

Neutrale Zwischenprodukte

Nach Oxidation von Kreosol (1) unter relativ milden Bedingungen und entsprechender Aufarbeitung (siehe exper. Teil) des Reaktionsgemisches konnten die folgenden neutralen Zwischenprodukte isoliert werden (Schema 1):

6,6'-Bikreosol (2)

Vanillylalkohol (3)

4-Hydroperoxy-2-methoxy-4-methyl-2,5-cyclohexadienon (4)

4-Hydroxy-2-methoxy-4-methyl-2,5-cyclohexadienon (5)

5,6-Epoxy-4-hydroxy-2-methoxy-4-methyl-2-cyclohexenon (6)

4-Hydroxy-2-methoxy-4-methyl-6-(2'-methoxy-4'-methyl-phenoxy)-2,5-cyclohexadienon (7)

4-Hydroxy-2-methoxy-4-methyl-2-cyclopentenon (8)

Schema 1

1026

Die angegebenen Substanzen (2-8) treten — je nach angewendeten Bedingungen — in unterschiedlicher, jedoch durchwegs geringer Konzentration $(0-3)_0^{\circ}$ der Ausgangskonzentration von 1) auf. Ihre Isolierung erfolgte durch chromatographische Trennung bzw. durch Kristallisation aus der Oxidationslösung nach geeigneter Aufarbeitung (siehe exper. Teil). Die Identifizierung erfolgte mit Hilfe der üblichen spektroskopischen Methoden, sowie bei 2, 3, 5, 6 und 8 zusätzlich durch GC und GC/MS der entsprechenden TMS (=Trimethylsilyl-)-ether, wodurch gleichzeitig eine Methode zur quantitativen Bestimmung dieser Substanzen verfügbar war. Der Beweis für die Richtigkeit der aus den Spektren abgeleiteten Strukturen wurde durch die Identität der physikalischen Eigenschaften der aus den Oxidationslösungen isolierten Substanzen mit vorhandenen (2 und 3) bzw. durch Synthese erhaltenen Vergleichssubstanzen (4-8) erbracht.

Die Synthese von 5 erfolgte auf bekanntem Weg⁵; 6 wurde daraus durch Epoxidierung mit *tert.-Bu*OOH hergestellt (59% d.Th.); diese beiden Substanzen sind als Oxidationsprodukte von 1 mit CH_3CO_3H bekannt⁶, ebenso wie 2 seit längerem als Oxidationsprodukt von 1 bekannt ist¹.

4 wurde aus 1 durch Oxidation mit H_2O_2/CeO_2 hergestellt (14% d. Th.); 7 wurde aus 6 durch Addition von 1 unter H_2O -Eliminierung erhalten (62,5% d. Th.). Die Synthese von 8 erfolgte ausgehend vom bekannten⁷ 2-Methoxy-2cyclopenten-1,4-dion (a) analog der Herstellung von 5 (22,5% d. Th. bez. auf a; Schema 2).

Schema 2

Carbonsäuren

Die Säurefraktionen der Oxidationslösungen des Kreosols stellen komplexe Substanzgemische dar, zu deren Charakterisierung die Gaschromatographie (mit Glaskapillarsäulen), sowie deren Kombination mit einem Massenspektrometer als Trenn- und Identifizierungsmethode verwendet wurde. Die gaschromatographierbaren Substanzen wurden zum Teil identifiziert, zum anderen Teil lieferten sie durch Intensität und Retentionsindex (errechnet aus den Retentionszeiten des fraglichen Peaks und coinjizierter n-Kohlenwasserstoffe) ihrer Signale im GC, sowie mit ihren Massenspektren (GC/MS) die Grundlage für die Beurteilung der Säurefraktion.

Nr	. Bezeichnung	mengenmäßige Bedeutung
g	Brenztraubensäure	gering
10	Milchsäure	gering
11	Oxalsäure	mittel
12	Malonsäure	mittel
13	Lävulinsäure	gering
14	Bernsteinsäure	gering
15	Hvdroxv-methyl-malonsäure	gering
16	Methyl-bernsteinsäure (Brenzweinsäure)	mittel
17	Methyl-maleinsäure (Citraconsäure)	sehr groß
18	2-Hydroxy-2-methyl-bernsteinsäure	mittel
19	Methyl-fumarsäure	gering
20	3-Methyl-glutaconsäure	sehr gering
21	3-Methyl-2,4-hexadiendisäure	sehr groß
	(3-Methyl-muconsäure)	0
22	4-Hydroxy-2-methoxy-benzoesäure	gering
	(Vanillinsäure)	~ ~
23	2-Hydroxy-3-methoxy-5-methyl-benzoesäure	gering

Folgende Carbonsäuren wurden in den verschiedenen Oxidationslösungen des Kreosols identifiziert:

Diese Säuren wurden als Methylester bzw. Methylester-TMS-Ether (15, 18) durch den Vergleich ihrer gaschromatographischen und massenspektrometrischen Daten mit denen von Vergleichssubstanzen identifiziert.

Quantitative Untersuchungen

Säurefraktion (=SF) und Neutralfraktion (=NF) wurden getrennt untersucht. In der NF wurden 1, 2, 3, 5, 6 und 8 als TMS-Ether bestimmt. Das Hydroperoxid 4, das nur unter sehr schonenden Bedingungen isoliert werden kann (Vers. 9, Tab. 1) wurde z. T. kristallisiert und ausgewogen, der nicht kristallisierbare Anteil (Mutterlauge) wurde aus dem DC im Vergleich mit 5 und 6 (als TMS-Ether quant. bestimmt) abgeschätzt. 7 trat in den, in Tab. 1 angeführten Versuchen nicht auf. Aus der Tab. 1 ist weiters ersichtlich, daß mit zunehmendem Gesamtabbau des Kreosols die relative Menge des Chinols 5 gegenüber der des Expoids 6 abnimmt. Bikreosol 2 ist in allen Reaktionsmischungen nachweisbar: die Tatsache, daß dessen Menge mit steigendem Umsatz ansteigt, ist darauf zurückzuführen, daß 2 unter diesen Bedingungen kaum angegriffen wird und sich in der Oxidationslösung anreichert, was auch für einige Säuren (insbesonders für 21) gilt. In den Säurefraktionen dominieren meist die 3-Methyl-muconsäure 21 und die Citraconsäure 17 neben wechselnden Mengen anderer Säuren. Mit

1028

VersNr.	9	7	6	10	8
Bedingungen:					
Menge (1)	ār	9 a	9 a	9 0	9 0
Temp $(^{\circ}C)$	3 g 811	4 g 1416	2 g 30	2 g 90	∠g 45
Zeit (min)	60	90	30 75	90	90 90
$n_{\rm O}$ (bar)	100	85	100	10	85
ml NaOH	$\frac{100}{200/2n}$	200/0,5n	50/2n	200/0,5n	200/0,5n
Neutralsubstanzen (in G	ew% einges.	1):			
1	92	87	39	2.5	0.9
2	0.016	0.034	0.025	1.0	0.05
3			0.08		
4	2.6*				
5	0,8	1,17	0,11		
6	0,8	3.27	0,8	0.05	
8			0,02		0,12
Carbonsäuren (in Gew%	einges. 1):		night		
11 Oxalsäure	0.16	0.65	best		5.96
12 Malonsäure		0.05		0.05	0.48
15 Hydroxy-methyl-		0,05	,	0,27	0,39
malonsäure					
16 Brenzweinsäure		0,07		0,75	0,5
17 Citraconsäure	0,08	0,37	····	0,97	1,85
18 2-Me-äpfelsäure		0,30		0,18	3,00
21 3-Me-muconsäure	0,21	1,41	;	0,37	2,27
NF gesamt (Gew% einge	s. 1):				
	> 100	96	40	6	6,9
SF gesamt	3,7	10,6	nicht best.	90,9	128,4

Tabelle 1

* Wert aus DC im Vergleich mit 5 und 6 abgeschätzt.

zunehmendem Abbau des Kreosols steigt sowohl in der NF als auch in der SF der nicht gaschromatographierbare Anteil an. Der vollständige Abbau des Kreosols erfolgt auch bei hohen Sauerstoffpartialdrücken erst bei höheren Temperaturen (ab 45 °C) innerhalb der bei dieser Versuchsreihe als oberste Grenze vorgesehenen Reaktionsdauer von 90 min.

Abbau von Zwischenprodukten

Die Neutralsubstanzen 4, 5 und 6, sowie 2-Methoxy-1,4-benzochinon und 3-Methyl-muconsäure (21) wurden in alkalischer Lösung unter verschiedenen Bedingungen — Luftsauerstoff, O_2 -Atmosphäre,

Abb. 1. Methylierte Säurefraktion aus dem Abbau des Epoxids 6 (Raumtemp., 1 bar O_2)

Abb. 2. Methylierte Säurefraktion aus dem Abbau des Chinols 5 (90 °C, Luftsauerstoff)

 $\rm H_2O_2$ — oxidiert und die Gaschromatogramme der Säurefraktionen mit denen des Kreosolabbaues verglichen. In den abgebildeten Chromatogrammen wurde zur Charakterisierung der Peaks der jeweilige *Kovats*index angegeben, die Peaks der co-injizierten *n*-Alkane wurden mit $\rm C_9-C_{16}$ bezeichnet.

Abb. 3. Methylierte Säurefraktion aus dem Abbau des Hydroperoxids 4

Abb. 4. Methylierte Säurefraktion aus dem Abbau des Kreosol 1 (90 °C, 10 bar O_2 , 90 min)

2-Methoxy-1,4-benzochinon

Die Oxidation bei 90 °C, 10 bar O_2 in 0,5n NaOH (3h), führte zu Oxalsäure, Malonsäure (Hauptmenge), Bernsteinsäure, Mesaconsäure und geringen Mengen anderer, nicht identifizierter Substanzen.

3-Methyl-muconsäure

Der Abbau bei 90 °C mit H_2O_2 in 0,5*n* NaOH findet nur in sehr geringem Ausmaß statt. Es sind u. a. geringste Mengen der Säuren 15-18 feststellbar.

Epoxid (6) (siehe Abb. 1)

Der Abbau unter verschiedenen Bedingungen (Raumtemp., Luftsauerstoff; Raumtemp., O₂-Atmosphäre; 90 °C, H₂O₂ bzw. Luftsauerstoff; alle Versuche in 2n NaOH) führten immer zu dem gleichen Substanzmuster in GC und GC/MS. Ein Großteil dieser Peaks ist mit solchen korrelierbar, die in der Säurefraktion des Kresolabbaues (90 °C, 10 bar O₂) auftreten.

Chinol (5)

Der Abbau bei Raumtemp. mit H_2O_2 und Luftsauerstoff in 2n NaOH führte zum Großteil über das Epoxid (6). Dieses konnte in den ersten Minuten nach der Herstellung der Reaktionsmischung mittels DC nachgewiesen werden. Das GC-Peakmuster der Säurefraktion entspricht weitgehend dem des Epoxid-Abbaues.

Der Abbau bei Raumtemp. mit Luftsauerstoff in 2n NaOH führte zu Peaks in der Säurefraktion, die z. T. mit solchen des Kreosolabbaues korreliert werden konnten.

Der Abbau bei 90 °C mit Luftsauerstoff in 2*n* NaOH führte zu Peaks in der Säurefraktion, die der Brenzweinsäure 16 (I = 1035,6), der Citraconsäure 17 (I = 1057,1) und der 2-Hydroxy-2-methylbernsteinsäure 18 (I = 1084,3) zugeordnet werden konnten. Daneben traten noch weitere Übereinstimmungen von Peaks nicht identifizierter Säuren auf. Geringe Anteile von Säuren aus dem Epoxid-Abbau konnten festgestellt werden (siehe Abb. 2).

Hydroperoxid (4) (siehe Abb. 3)

Der Abbau wurde bei Raumtemp. in 2n NaOH durchgeführt und in den ersten 30 min mittels DC verfolgt. Sofort nach der Herstellung der Reaktionsmischung bildeten sich das Epoxid **6** und das Chinol **5**, das in den folgenden Minuten bedeutend schneller abgebaut wurde. Das GC-Peakmuster der Säurefraktion entsprach der Überlagerung der GC-Peakmuster des Chinol- und des Epoxid-Abbaues. Bezüglich Intensität und Lage der Peaks korrelierte es gut mit dem GC der Säurefraktion des Kreosolabbaues (siehe Abb. 4).

Diskussion

Im Anion und im daraus durch Oxidation hervorgegangenen Phenoxyradikal des Kreosols stellen die C-Atome 2, 4 und 6 des aromatischen Ringes wegen der erhöhten Elektronendichte bzw. des erhöhten Radialcharakters an diesen Stellen bevorzugte Angriffspunkte für das Sauerstoffmolekül dar. Daraus ergeben sich im wesentlichen drei verschiedene Abbauwege, über die sich der gesamte Abbau des Kreosols vollzieht. Die geringen Substanzmengen, die durch Oxidation der Methylgruppe gebildet werden (Vanillylalkohol **3** und Vanillinsäure **22**) fallen nicht ins Gewicht.

Abbauweg 1: Angriff am C-2 des aromatischen Ringes (Schema 3).

Das Hydroperoxid ist nicht faßbar, als einziges Produkt des Abbauweges 1 tritt 3-Methyl-2,4-hexadiendisäure 21 auf. Diese Reaktionsfolge wird von hohem O_2 -Druck begünstigt, bei höheren Temperaturen wird sie zunehmend von anderen Abbaureaktionen konkurrenziert.

Abbauweg 2: Angriff am C-4 des aromatischen Ringes.

Das erste Produkt des Abbauweges 2 ist das Hydroperoxid 4, das unter geeigneten Bedingungen aus der Oxidationslösung isoliert werden kann. Dieses zersetzt sich entweder zum Chinol 5 oder lagert sich zum Epoxid 6 um³. Für die Bildung von 6 darf jedoch die Epoxidierung von 5 nicht außer acht gelassen werden, wie die leichte Epoxidierbarkeit von 5 bei der Synthese von 6 und beim oxidativen Abbau von 5 zeigt (Schema 4).

Die Entstehung von 7 läßt sich ausgehend von 6 erklären. Hinweise dafür bilden der Syntheseweg sowie die Tatsache, daß 7 nur bei Oxidationen mit geringem O_2 -Partialdruck (1 bar) in nachweisbaren Mengen auftritt.

P. Fricko u. a.:

Die Entstehung des Cyclopentenons 8 muß auf Grund der vorhandenen Strukturelemente aus den Zwischenprodukten 5 oder 6 erfolgen. Schema 5 zeigt einen möglichen Reaktionsverlauf, wobei jedoch zu bedenken ist, daß für das tatsächliche Vorliegen dieses Reaktionsablaufes keine experimentellen Hinweise existieren.

Sowohl der Phenylether 7 als auch das Cyclopentenon 8 sind für den Gesamtprozeß der Oxidation von untergeordneter Bedeutung, wie die quantitativen Versuche gezeigt haben (siehe Tab. 1); von wesentlicher Bedeutung hingegen sind 4, 5 und 6, da das Auftreten der meisten Carbonsäuren höheren Molekulargewichts, die also noch charakteristische Strukturmerkmale des Ausgangsmaterials tragen, experimentell von diesen Zwischenprodukten hergeleitet werden kann.

Der Abbau des Epoxids **6** erfolgt zu nicht identifizierten Säuren. Die massenspektrometrischen Daten dieser Substanzen lassen aber die Vermutung zu, daß der Ring nur hydrolytisch gespalten wird⁸, ohne daß dann noch nennenswerter oxidativer Abbau stattfindet. Die Säuren des Epoxid-Abbaues findet man nur in den bei hohen Temperaturen und niedrigen O₂-Partialdrücken (10 bar) oxidierten Lösungen.

Über den Mechanismus des Abbaues von 5 zu den im Oxidationsgemisch identifizierten Säuren (Brenzweinsäure 16, Hydroxy-methyl-malonsäure 15, Citraconsäure 17 und 2-Hydroxy-2-methyl-bernsteinsäure 18) besteht keine Gewißheit. Eine mögliche Reaktionsfolge für die Bildung von 16 aus 5 wäre die folgende:

Dienon-Phenol-Umlagerung des Chinols 5 zum 2-Methoxy-5-methylhydrochinon⁹, Oxidation zum Chinon, weitere Umsetzung zur Brenztrauben-

säure 16 analog dem — experimentell durchgeführten — Abbau von 2-Methoxy-1,4-benzochinon, der u.a. auch zur Bernsteinsäure führt (Schema 6).

Der Mechanismus der letztgenannten Umsetzung ist ungeklärt. Die Citraconsäure 17 entsteht nicht über das 2-Methoxy-5-methyl-1,4benzochinon, da auch beim Abbau von 2-Methoxy-1,4-benzochinon keine Maleinsäure oder Fumarsäure gebildet wird.

Es soll nicht unerwähnt bleiben, daß beim Abbau des Chinols 5 die Mengenverhältnisse der entstehenden Säuren stark zugunsten der Brenzweinsäure verschoben sind: beim Abbau des Hydroperoxids 4, bei dem auch Epoxid 6 gebildet wird, entsprechen die Mengenverhältnisse der entstehenden Säuren denen in den Oxidationslösungen des Kreosols; der Abbau der Substanzen 5 und 6 erfolgt anscheinend nicht unabhängig voneinander.

Abbauweg 3: Es wurden keine experimentellen Hinweise auf einen Angriff des Sauerstoffs auf C-6 des aromatischen Ringes erhalten; als einziges Produkt einer Oxidation in 6-Stellung konnte 6,6'-Bikreosol, sowie dessen Oxidationsprodukt 2-Hydroxy-3-methoxy-5-methylbenzoesäure nachgewiesen werden (bezüglich der Entstehung von Ameisensäure aus diesem C-Atom beim Abbau von 2 siehe Lit.⁴; Schema 7).

Ein Vergleich der Abbauwege des Kreosols erlaubt folgende Aussagen: Der größte Teil des Kreosols wird über den Abbauweg 2 umgesetzt, wobei der Abbau über das Epoxid erst bei höheren Temperaturen merklich in Erscheinung tritt. Beinahe der gesamte restliche Teil des Kreosols wird über den Abbauweg 1 zu 3-Methylmuconsäure umgesetzt. Andere Abbaureaktionen finden zwar statt, haben aber wenig Bedeutung.

Dank

Wir danken für die finanzielle Unterstützung dieser Arbeit dem Österreichischen Fonds zur Förderung der Wissenschaftlichen Forschung und dem Jubiläumsfonds der Oesterreichischen Nationalbank.

Vers. Nr.	Aus ma'	sg. t.	Rt ml NaOH	saktionsbe	ədingungen OxidMittel	Zeit	Temp. (°C)	fl./fl Extr.	farb, d. Neut eind./ gefrtr.	ralfr. (pH7) fl./fest- Extr. Aceton	
-	-	õg	250/ $2n$	0_2	1 bar	240′	20		gefrtr.	$2 imes 50 \mathrm{ml}$	
2	1	58	25/ $2n$	O_2	$1 \mathrm{bar}$	420'	20	ļ	gefrtr.	$1 \times 100 \text{ ml}$	
್	1	5 g	25/ $2n$	0_2	1 bar	240′	20	$3 \times 25 \text{ ml}$ $A_c O E t$	eind.	$1 \times 100 \text{ ml}$	
4	1	2 80 80	50/2n	O_2	$70 \mathrm{bar}$	60'	40		gefrtr.	$2 imes 50 ext{ ml}$	
õ	1	58	125/2n	0_2	80 bar	60′	4045	$3 \times 50 \text{ ml}$ AcOEt	eind.	$2 imes 50~{ m ml}$	
9	Т	28	50/ $2n$	O_2	100 bar	75'	30	$4 \times 40 \text{ m}$] AcOBt		ł	
L-	 ,	2 g	200/0,5n	0_2	85 bar	90,	14	$5 \times 50 \mathrm{ml}$ AcOEt	eind.	$1 \times 50 \text{ ml}$	
×	1	13 66	200/0,5n	0_2	85 bar	90	45	$6 \times 40 \text{ ml}$ AcOEt	eind.	$2 imes 50 \mathrm{ml}$	
6		5 g	200/2n	O_2	$100 \mathrm{bar}$	60′	811	$9 \times 30 \text{ ml}$ AcOEt	eind.	$1 \times 50 \mathrm{~ml}$	
10	1	29	200/0.5n	O_2	10 bar	90,	06	$3 \times 50 \text{ ml}$ AcOEt	eind.	ł	
11	9	$34\mathrm{mg}$	3,4/0,5n	${ m H_2O_2}$	1 Äquiv	200'	20			I	
12	5 C	170 mg	17/0,5n	$3\% { m H_2}($	$ m D_2$ 1,25 ml	200′	20	$3 \times 50 \text{ ml}$ AcOEt	eind.	I	

 $Tabelle \ 2$

1036

P. Fricko u. a.:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{\partial}{\partial u}$	0/011202	0,8 mi	740	90			Ì
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ي با	$\frac{5}{2}$	$30\% { m H_2U_2}$	1 ml	30	90	Ĺ	İ	l
$3 \mathrm{mg}$ 1,3/0,5 n 3%, $\mathrm{H_2O_2}$ 0,25 ml 100' 90	o mg	2/2n	O_2	1 bar	180′	20	[I	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 m_g$	1, 3/0, 5n	$3\%{ m H_2O_2}$	$0,25\mathrm{ml}$	100'	06	-	1	-
$2 g = 200/0.5 n = 0_2 = 10 bar = 90' = 90 = 3 \times 50 ml = -$	$22 \mathrm{mg}$	2/0,5n	$Luft-O_2$		120'	90			l
$\Omega_{2}^{s_{2}}B$	06 17	200/0.5n	0_2	$10 \mathrm{bar}$	90′	06	3×50 ml	-	1
							Et_2O		

* Mb bedeutet 2-Methoxy-1,4-benzochinon.

Experimenteller Teil

Gaschromatische Untersuchungen: Carlo Erba Fractovap 2300 mit FID, 30 m SE-30 Glaskapillarsäule; GC/MS-System: Hewlett-Packard 5992 B, 30 m SE-30 Glaskapillarsäule; H¹-NMR: Varian XL 100 bzw. Varian EM 360; Massenspektrometer: CH 7 mit Spectra-System 166 (70 eV); IR-Spektrometer: Perkin-Elmer 377; Schmelzpunktbest.: Kofler-Heiztischmikroskop (unkorr.).

Durchführung der Oxidationen und Aufarbeitung

Das Ausgangsmaterial wurde unter den angegebenen Bedingungen (Tab. 2) oxidiert (Versuche unter erhöhtem Druck in teflonbeschichtetem Autoklaven), anschließend neutralisiert (0°C; HCl, CO₂; pH = 7) und entsprechend der Tab. 2 weiter aufgearbeitet (Neutralfraktion = NF). Der nach Abtrennung der NF verbliebene Rückstand (feste Na-Salze der Carbonsäure bzw. wäßrige Lösung) wurde angesäuert (siehe Tab. 3) und die Säurefraktion (= SF) extrahiert.

Die SF wurde zur Trockene eingedampft (20–30 °C Badtemp.), der Rückstand in *Me*OH aufgenommen und mit etherischer CH_2N_2 -Lösung methyliert. Die gaschrom. Untersuchungen dieser Estergemische erfolgten unter folgenden Bedingungen: T_{inj} : 250 °C; Säule: 3 min bei 70 °C, dann mit 5 °C/min auf 250 °C; für quant. Bestimmungen wurde Diphenyl als innerer Standard zugesetzt. Die *Kovats*-Indices der GC-Peaks errechnete man durch lineare Interpolation ihrer Retentionszeiten zwischen denen benachbarter *n*-Kohlenwasserstoffe.

Die NF wurde zur Trockene eingedampft, aus dem Rückstand die Hauptmenge an verbliebenem 1 durch Feinvakuumdestillation bei Raumtemp. abgetrennt und das zurückbleibende Gemisch entweder chrom. getrennt (Kieselgelsäule bzw. -platten, Laufmittel: Et_2O ; Vers. 1, 2 und 5, Tab.2), silyliert (für quant. Untersuchungen, Vers. 6, 7, 8, 9 und 10) oder das gewünschte Produkt kristallisiert (Vers. 3 und 9); 7 wurde aus dem nach Abdestillieren der Hauptmenge 1 verbliebenen Rückstand (Vers.3) nach Aufnehmen in Et_2O , Ausschütteln mit 2n NaOH und H₂O, Trocknen und Eindampfen durch Anreiben mit wenig Et_2O kristallisiert [etwa 10 mg, Schmp. (Zers.): 84—87 °C]. 4 wurde aus der NF (Vers.9) nach Abdestillieren der Hauptmenge 1 durch Versetzen des Rückstandes mit wenig absol. Benzol kristallisiert (81 mg, Schmp.: 100—102 °C).

Die Silylierung erfolgte durch Auflösen von etwa 40 mg Gemisch in 1 ml Pyridin, Versetzen mit 0.9 ml Hexamethyldisilazan und 0.1 ml CF₃COOH; nach 1 h Stehenlassen bei Raumtemp. (gelegentliches Umschütteln) wurde weitgehend eingedampft, der Rückstand in CHCl₃ aufgenommen und gaschromatographiert (Bedingungen wie bei Carbonsäureestern).

Synthese der Vergleichssubstanzen

5,6-Epoxy-4-hydroxy-2-methoxy-4-methyl-2-cyclohexenon (6)

0,15 g 5 wurden in 3 ml absol. *Et*OH gelöst, mit 0,1 g *tert-Bu*OOH (Kp.₉ = 28 °C, n_D^{20} = 1,402) versetzt, auf 0 °C gekühlt und etwa 0,03 g Triton *B* (40% in *Me*OH) zugesetzt; nach 1,5 h wurde bei Raumtemp. zur Trockene eingedampft, der Rückstand in *AcOEt* aufgenommen, mit NaHCO₃ ausgeschüttelt, getrocknet, eingedampft und der Rückstand aus Benzol/Petrolether kristallisiert. Schmp. 80—83 °C (Lit. ⁶: 80—82 °C); Ausb. 0,098 g (= 59% d. Th.).

Vers. Nr.	Aufarb. d. Ansäuern mit	Säurefraktion eind. oder fl./flExtr. mit <i>Et</i> ₂ O	Zielsetzung/Bemerkungen
1			Isolierung von 2, 3, 5, 6 Säulenchrom./präp. DC
2	-		Isolierung von 7, präp. DC
3			Isolierung von 7 chem. Trennung
4	80 ml	eind.	GC der silylierten Methyl-
	$1.7n~{\rm HCl}/Et_2{\rm O}$		esterfraktion
$\mathbf{\tilde{5}}$			Isolierung von 8, präp. DC
6			Quant. Best. d. <i>TMS</i> -Ether (Neutralfraktion)
7	80 ml 1,7 <i>n</i> HCl/ <i>Et</i> ₂ O	eind.	Quant. Best. d. <i>TMS</i> -Ether und Methylester
8	$80\mathrm{ml}$ 1,7 $n\mathrm{HCl}/Et_2\mathrm{O}$	eind.	Quant. Best. d. <i>TMS</i> -Ether und Methylester
9	$80 \mathrm{ml}$ 1,7 $n \mathrm{HCl}/Et_2\mathrm{O}$	eind.	wie Versuch Nr. 8, Isolierung von 4 durch Krist.
10	$ m 80ml$ 1,7 $n m HCl/Et_2O$	eind.	Quant. Best. d. <i>TMS</i> -Ether und Methylester
11	$5 \mathrm{~ml}$ 1,7 $n \mathrm{HCl}/Et_2\mathrm{O}$	eind.	GC der Methylester
12	$20\mathrm{ml}$ 1,7 $n\mathrm{HCl}/Et_2\mathrm{O}$	eind.	Best. d. Neutralsubst., GC der Methylester
13	2n HCl	$2 \times 5 \text{ ml}$	GC der Methylester
14	$2n\mathrm{HCl}$	$2\times 20~{\rm ml}$	wäßr. Phase eingeengt, davon GC als Methylester
15	$2n\mathrm{HCl}$	eind.	GC der Methylester
16	$2n\mathrm{HCl}$	eind.	GC der Methylester
17	$2n\mathrm{HCl}$	$3 \times 5 \ { m ml}$	GC der Methylester
18	$10\mathrm{ml}\ 10n\mathrm{H}_2\mathrm{SO}_4$	$3 \times 50 \mathrm{~ml}$	GC der Methylester

 $Tabelle \ 3$

4-Hydroxy-2-methoxy-4-methyl-6-(2'-methoxy-4'-methyl-phenoxy)-2,5cyclohexadienon (7)

 $81\,{\rm mg}$ 6 wurden mit 4 ml einer 0,25
n-Lösung von 1 in absol. MeOH unter Zusatz von 0,1 ml Triton B (40% in MeOH) 2
h unter Rückfluß erhitzt,

anschließend zur Trockene eingedampft (Raumtemp.), der Rückstand in etwa 20 ml AcOEt aufgenommen, 2mal mit 5n NaOH, 2mal mit H₂O extrahiert, getrocknet und eingedampft, wobei 86,6 mg öliger Rückstand verblieben, der beim Anreiben mit wenig Et_2O kristallisierte; Schmp. 84—87 °C (Zers.); Ausb. 62,5% d. Th.

IR (KBr, cm⁻¹): 3410, 1655, 1620, 1075.

MS (m/e, rel. I.): 290 (M⁺, 100), 275 (30), 244 (36), 153 (35), 138 (86), 122 (84), 43 (60), 39 (58).

¹H-NMR (100 MHz, CDCl₃): 1,48 (s, 3 H, *R*-CH₃); 1,80–2,05 (s, 1 H, –OH); 2,36 (s, 3 H, *Ar*-CH₃); 3,72 (s, 3 H, –OCH₃); 3,79 (s, 3 H, –OCH₃); 5,68 (d, 1 H, ol); 5,89 (d, 1 H, ol); 6,7–7,0 (m, 3 H, *Ar*); $J_{35} = 2,5$ Hz.

4-Hydroxy-2-methoxy-4-methyl-2-cyclopentenon (8)

4-Cyano-3-methoxy-4-trimethylsilyloxy-2-cyclopentenon (b) 0,45 g 2-Methoxy-2-cyclopenten-1,4-dion (a) wurden mit 0,43 g Cyantrimethylsilan unter Zusatz einer Spatelspitze KCN-Kronenetherkomplex 2 h auf 70 °C erwärmt, anschließend gekühlt und im Vakuum destilliert; das Produkt ging als farbloses Öl bei 90 °C/0,05 Torr über; Ausb. 0,73 g = 91% d. Th.

¹H-NMR (60 MHz, CCl₄): 0,10 + 0,15 + 0,20 [s, s, s, zus. 9 H, --(CH₃)₃]; 2,70 (d, 1 H, --CH₂--); 3,10 (d, 1 H, --CH₂--); 3,88 (s, 3 H, --OCH₃); 5,30 (s, 1 H, ol); $J_{AB} = 18$ Hz.

4-Hydroxy-2-methoxy-4-methyl-2-cyclopentenon (8)

0,73 g (b) wurden in 10 ml absol. Et_2O gelöst und unter Rühren in N₂-Atmosphäre bei -70 °C im Verlauf von etwa 5 min mit 2 ml 2n CH₃Li-Lösung in Et_2O versetzt; danach wurde die Lösung auf Raumtemperatur erwärmt (dunkelgrüner NS), 45 min weitergerührt, mit H₂O hydrolysiert, 2mal mit H₂O ausgeschüttelt und getrocknet. Diese Lösung wurde unter Zusatz von 5 ml Aceton mit 2 ml 2n AgF-Lösung 1h bei Raumtemperatur gerührt, anschließend die org. Phase abgetrennt, mit NaHCO₃ und H₂O extrahiert, getrocknet und eingedampft. Das DC des braunen, öligen Rückstandes (0,33 g) zeigte 8 als Hauptprodukt, das jedoch nicht kristallisiert werden konnte; das Gemisch wurde chromatographisch getrennt (Kieselgelsäule, Elutionsmittel: AcOEt), wobei 120 mg (26% d. Th. bez. auf b) 8 als farbloses Öl isoliert wurden.

IR (CH_2Cl_2, cm^{-1}) : 3570, 1725, 1620.

MS (m/e, %rel. I.): 142 (M^+ , 12); 127 (100); 98 (24); 43 (75); 41 (43); 27 (44); 26 (34).

¹H-NMR (100 MHz, $CDCl_3$): 1,55 (s, 3 H, $-CH_3$); 1,70–2,0 (s, 1 H, -OH); 2,62 (s, 2 H, $-CH_2-$); 3,75 (s, 3 H, $-OCH_3$); 6,20 (s, 1 H, ol).

4-Hydroperoxy-2-methoxy-4-methyl-2,5-cyclohexadienon (4) (siehe Lit.¹⁰)

Eine Lösung von 0.5 g 1 in 50 ml *Et*OH wurde unter Zusatz von 2,0 g CeO₂ und 100 ml 35% igem H₂O₂ 2 h unter Rückfluß erhitzt, gekühlt, filtriert, mit CHCl₃ extrahiert (8mal je 25 ml), getrocknet, eingedampft, der Rückstand in ges. NaHCO₃-Lösung aufgenommen, mit wenig CHCl₃ extrahiert (org. Phase verworfen), die wäßr. Phase neutralisiert und nochmals mit CHCl₃ extrahiert. Die Extrakte wurden getrocknet und eingedampft, der Rückstand in absol. Benzol (4 ml) aufgenommen, wobei 4 nach dem Anreiben als farbloses Produkt kristallisierte; Ausb. 86 mg = 14% d. Th.; Schmp. 100-101 °C.

IR (KBr, cm⁻¹): 3380, 1665, 1640, 1610, 1360, 1210, 1108.

MS (m/e, %rel. I.): 170 (M^+ , 0,5); 154 (12); 139 (27); 137 (100); 111 (25); 109 (28); 69 (22); 43 (75); 39 (62); 27 (90).

¹H-NMR (100 MHz, CDCl₃): 1,49 (s, 3 H, —CH₃); 3,68 (s, 3 H, —OCH₃); 5,77 (d, 1 H, ol); 6,24 (d, 1 H, ol); 6,93 (dd, 1 H, ol); 9,1—9,2 (s, 1 H, —OOH); $J_{35} = 2,5$ Hz; $J_{56} = 10$ Hz.

Massenspektren der TMS-Ether (m/e, %rel. I.)

- 1 210 $(M^+, 22)$; 195 (17); 181 (15); 180 (100); 179 (10); 165 (9); 150 (7); 149 (9).
- **2** 418 $(M^+, 61)$; 388 (25); 222 (33); 192 (25); 179 (26); 73 (100); 59 (20); 45 (27).
- **3** 298 $(M^+, 55)$; 283 (25); 268 (41); 267 (31); 209 (79); 179 (40); 149 (21); 73 (100).
- **5** 226 $(M^+, 19)$; 211 (86); 180 (16); 93 (24); 75 (56); 73 (100); 69 (20); 45 (21).
- **6** 242 $(M^+, 0,2)$; 227 (17); 226 (100); 199 (13); 152 (20); 75 (62); 73 (80); 45 (29); 43 (17).
- 8 214 $(M^+, 4,3)$; 200 (17); 199 (100); 125 (22); 124 (15); 89 (24); 75 (76); 73 (44); 45 (17).

Literatur

- ¹ F. W. Vierhapper, E. Tengler und K. Kratzl, Mh. Chem. 106, 1191 (1975).
- ² K. Kratzl, C. Claus, W. Lonsky und J. S. Gratzl, Wood Science and Technology 8, 35 (1974).
- ³ J. Gierer und F. Imsgard, Acta Chem. Scand. B31, 537 (1977).
- ⁴ K. Gratzl, F. W. Vierhapper und E. Tengler, Mh. Chem. 106, 321 (1975).
- ⁵ D. A. Evans, J. M. Hoffman und L. K. Truesdale, J. Amer. Chem. Soc. 95, 5822 (1973).
- ⁶ H. H. Nimz und H. Schwind, Cell. Chem. Techn. 13, 35 (1979).
- ⁷ C. Samarian und H. Wanzlick, Tetrahedron Lett. 24, 2125 (1974).
- ⁸ M. M. Shemyakin und L. A. Shchukina, Quart. Rev. 10, 261 (1956).
- ⁹ K. Sato und Y. Fujiama, Yuki Gosei Kagaku Kyokai Shi 25, 262 (1967); C.A. 67, 11307 q (1967).
- ¹⁰ D. H. R. Barton, P. D. Magnus und J. C. Quinney, J. Chem. Soc., Perkin I, 1975, 1610.